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Abstract: In previous work, we introduced the quasi-static retry traffic model, which describes the behavior of
retry traffic generated by users who are impatient when waiting for a response from the system. In other words,
the model describes interactions between users and the system. This interaction can be described in a simple
form if it is assumed that the system offers infinitely fast (ideal) processing. Moreover, we proposed a performance
evaluation technique called the quasi-static approach that replicates the temporal evaluation of traffic in finite speed
(real-world) systems. In the quasi-static approach, the difference between the behavior of the ideal system and that
of the real-world system is expressed as stochastic fluctuation. In this paper, we model the fluctuation for exactly
replicating the behavior of retry traffic caused by user impatience using the quasi-static approach, and show the
validity of an evaluation of the quasi-static approach by comparing the results of the quasi-static approach and that
of conventional Monte Carlo simulation, in M/M/1- and M/M/s-based systems with retry traffic.

Key–Words: Retry traffic, Quasi-static approach, Fluctuations, Traffic model, Queueing system, Langevin equation,
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1 Introduction
One significant problem with the Internet is node fail-
ure due to congestion or overloading. A key factor
behind overloading is retry traffic, where users repeat-
edly attempt to access links and in doing so generate
duplicate service requests. To optimize resource al-
location and construct stable systems, an evaluation
method that accurately models retry traffic is therefore
essential.

Retry traffic can be classified into the following
two types:

• Retry traffic due to request discard: Caused
by a shortage of system resources. Requests that
exceed service capacity are discarded, regardless
of whether the shortfall is temporary or chronic.
Rejected users then reattempt service access.

• Retry traffic due to impatience: Human nature
drives most users who have been kept waiting to
issue duplicate service requests; the original re-
quest is not cancelled.

The M/G/s/s retrial queue model is a well-known
attempt at using a queuing model to replicate retry
traffic [1]. In that model, if all s servers are busy

when a service request arrives at the system, the ser-
vice request is discarded. Discarded requests reenter
the system after a certain elapsed time that follows
an exponential distribution. The conventional under-
standing is that the model describes communication
services (including IP telephony) based on the Re-
source reSerVation Protocol (RSVP) [2]. In M/G/s/s,
servers correspond to bandwidth, and a reattempt oc-
curs if a service request arrives when all servers are
busy, so there is no available bandwidth. Retry traf-
fic in this model corresponds to the first of the two
types mentioned above. That is, like most previous
works [3, 4, 5, 6], the M/G/s/s retrial queue model
does not consider retry traffic due to user impatience.

Taking IP telephony as an example, [7] modeled
the behavior of retry traffic by considering not only re-
quest discards but also impatience; the result is called
the quasi-static retry traffic model. Traffic behavior
is determined by interaction between users and a sys-
tem because users’ decisions are affected by the state
of a system. The model of [7] allows the interaction
to be very simply described if the system can respond
infinitely faster than the users.

To evaluate the behavior of traffic on systems that
offer real-world speeds, [7] proposed the quasi-static
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approach, in which the difference between the behav-
ior of the infinitely high-speed system and that of the
finite speed system is treated as stochastic fluctuation.
Compared with the conventional Markov and Monte
Carlo approaches, the quasi-static approach might be
superior for estimating the probability of rare system
outages on systems with finite but very high speed.

In this paper, we discuss how to model the fluctu-
ation for exactly replicating the behavior of retry traf-
fic caused by user impatience using the quasi-static
approach. We demonstrate modeling of the fluctua-
tion in M/M/1- and M/M/s-based systems with retry
traffic, and confirm that the results of the quasi-static
approach correspond to those of the slower conven-
tional Monte Carlo simulation of queuing systems.
Note that low-speed systems can be easily evaluated
by conventional Monte Carlo simulation.

The rest of the paper is organized as follows. We
summarize the quasi-static approach in Section 2. In
Section 3, we compare the evaluation results of the
quasi-static approach against those of Monte Carlo
simulations of the input traffic under M/M/1- and
M/M/s-based systems with retry traffic, and we intro-
duce a fluctuation model for exactly replicating the be-
havior of retry traffic. The comparison demonstrates
the validity of the quasi-static approach. We conclude
the paper in Section 4.

2 Quasi-static Approach for IP Tele-
phony System

2.1 Quasi-static Retry Traffic Model
Reference [7] introduced the quasi-static retry traf-
fic model model to describe an IP telephony system
with retry traffic due to both request discard and im-
patience. The model describes the interaction between
users and a system with different timescales, since
retry traffic is generated by user reattempts, which oc-
cur much more slowly than the responses of the sys-
tem. In this subsection, we briefly explain the quasi-
static retry traffic model introduced in [7].

Figure 1 shows a model of the IP telephony sys-
tem investigated in [7]. The model is composed of a
control plane and a data plane connected in series. It
describes the behavior as related to call setup and data
transmission processing. The control plane and the
data plane are modeled by M/M/1 and M/G/s/s, re-
spectively. Service requests first arrive at the M/M/1
queue and receive service from the M/M/1 server.
Next, service requests receive service from one of the
s servers in M/G/s/s. Subsequent service requests are
discarded if all s servers are busy when they arrive at
M/G/s/s. Service requests discarded on the data plane

Figure 1: Model incorporating retry traffic from the
control plane (M/M/1) and the data plane (M/G/s/s)

are stored in a retrial queue, and re-enter the system
after an elapsed time determined by an exponential
distribution. The volume of duplicate service requests
is proportional to the number of users in the system of
the control plane. Retry traffic from the control plane
is the result of user psychology: increased service ac-
cess delays trigger more reattempts. This retry traffic
caused by user impatience characterizes the model.

We assume that reattempts due to impatience
have extremely long timescales, as compared to the
timescales of the transitions of the number in the sys-
tem caused by service request arrival. By assigning a
discrete time transition to the former and a continuous
time transition to the latter, [7] constructed a traffic
model that can express the difference in timescales.

For a certain constant T (> 0), where T denotes
the timescale of user response, the traffic model is as
follows:

• A change in the request arrival rate due to user
reattempts occurs only when time t = kT (k =
1, 2, · · · ).

• The arrival rate of retry traffic from the control
plane in the time interval (kT, (k + 1)T ] is pro-
portional to the average number in the system in
the time interval ((k − 1)T, kT ] (Fig. 2).

• Compared to the speed of user response, the sys-
tem works at infinitely high speed, and the aver-
age number in the system in finite time interval
(kT, (k + 1)T ] is equal to the mean calculated
from the stationary state probability.

Reference [7] used 1 s for T , based on a study of user
response times [8].

The system attains the stationary state in the finite
time interval ((k − 1)T, kT ] because the arrival rate
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Figure 2: Relationship between a change in arrival
rate and the number in the system

does not change in the interval, and we assume that the
system can respond at infinitely high speed. There-
fore, since the arrival rate λk+1 of service requests in
the time interval (kT, (k + 1)T ] depends only on the
arrival rate λk in the time interval ((k − 1)T, kT ], we
get λk+1 by the recurrence equation

λk+1 = λ0 + λkB(λk/µ, s) + ε
λk/η

1 − λk/η
, (1)

where λ0 denotes the original arrival rate excluding
retry traffic, η and µ denote service rates of the con-
trol and the data plane, respectively (i.e., the respec-
tive average service times are 1/η and 1/µ), and ε is a
positive constant indicating the intensity of retry traf-
fic generated from the control plane. B(ρ, s) is the
Erlang B formula and represents the discard rate on
M/G/s/s, as follows:

B(ρ, s) =
ρs/s!

1 + ρ + ρ2/2! + · · · + ρs/s!
.

The second and the third term on the right side of
Eq. (1) represent retry traffic from the data and the
control plane, respectively.

In this model, the rate of retry traffic from users
in the control plane is proportional to the time aver-
age of the number in the system, and this means that
the number of user reattempts is proportional to user
time spent in the M/M/1 system on the control plane
(the delay before service provision). According to the
PASTA (Poisson Arrivals See Time Averages) prop-
erty [9], in M/M/1 the event-average of the number
in the system just before service request arrival equals
the time average of the process of the number in the

system. If the system works at infinitely high speed
(namely, the limit for λk → ∞, η → ∞), the follow-
ing equation holds:

lim
λk→∞

λk/η

1 − λk/η
= lim

λk→∞

1
M(λk)

M(λk)∑
i=1

Qk
i a.s.,

(2)

where M(λk) and Qk
i (i = 1, 2, · · · ,M(λk)) de-

note the number of arrivals in the time interval ((k −
1)T, kT ] and the number in the system just before the
ith arrival in the time interval ((k − 1)T, kT ], respec-
tively. M(λk) is a random variable that follows a
Poisson distribution with parameter λkT . Note that
the left side of Eq. (2) corresponds to the third term
on the right side of Eq. (1). Moreover, using Little’s
formula [10], we find

lim
λk→∞

1
M(λk)

M(λk)∑
i=1

Qk
i = λk lim

λk→∞

1
M(λk)

M(λk)∑
i=1

W k
i

= lim
λk→∞

M(λk)∑
i=1

W k
i a.s.,

where W k
i (i = 1, 2, · · · ,M(λk)) denotes the time

spent by the ith arrival in the system in the time inter-
val ((k − 1)T, kT ], and the last equality follows from
the following limit:

lim
λk→∞

M(λk)
λk

= 1 a.s.

Therefore, if each user reattempts access in propor-
tion to waiting time, the input traffic is determined by
Eq. (1) on the limit λk → ∞. Since we assume the
system works at infinitely high speed, Eq. (2) holds,
and we can get the transition of the arrival rate by de-
termining λk+1 in Eq. (1) from the original arrival rate
λ0. As a result, we can analyze the stability of the sys-
tem [7, 11].

2.2 Quasi-static Approach
As mentioned above, Eq. (1) describes the behavior of
a system with infinitely high response speed. Equa-
tion (1) may not describe real systems, since actual
response speeds are finite. With real-world systems,
since we cannot take the limit as in Eq. (2), we should
add a fluctuation term φ(λk) as follows:

λk/η

1 − λk/η
+ φ(λk) =

1
M(λk)

M(λk)∑
i=1

Qk
i . (3)
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Note that φ(λk) is a random variable whose mean is
0.

If we analyze the behavior of the left side of
Eq. (3) using the conventional Markov approach,
we must consider a Markov model with M(λk)-
dimensional state space consisting of the past M(λk)
states {Qk

i } (i = 1, · · · ,M(λk)). In the case of
M(λk) ≫ 1 (an extremely fast system, but not an
infinitely fast one), the problem becomes intractable
due to the excessive state space. When we use Monte
Carlo simulation to analyze the behavior of a high-
but-finite-speed system, the simulation must be quite
long if we are interested in the probabilities of rare
events (e.g. the probability of service failure is to be
less than 10−6). Therefore, it is difficult to analyze
the behavior of high-speed systems by conventional
approaches.

To solve the above problem, [7] proposed adding
stochastic fluctuations to the behavior of a system
with infinitely high response speed. This is called
the quasi-static approach. The stochastic fluctuations
mirror the difference between the behavior of finite
speed systems and that of infinitely high-speed sys-
tems. Reference [7] defines X(t) as the volume of
input traffic, including retry traffic, at time t, and
expresses the temporal evolution of X(t) using the
Langevin equation

d
dt

X(t) = F (X(t)) +
√

D(X(t)) ξ(t) , (4)

where ξ(t) denotes white Gaussian noise with the fol-
lowing property:

E[ξ(t)] = 0, E[ξ(t)ξ(t′)] = δ(t − t′) .

Note that, for expedience, we replace discrete time kT
with continuous time t in Eq. (4). F (X) and D(X)
are given as

F (X) = λ0 + B

(
X

tT
, s

)
+ ε

X/(ηT )
1 − X/(ηT )

− X

T
,

(5)

D(X) =
X

T
+ c(X) , (6)

where c(x) is a simple step function representing the
fluctuations in retry traffic from the data plane (see
[7] for details). In Section 3, we discuss the deriva-
tion and the validity of F (X) and D(X) in detail for
M/M/1- and M/M/s-based systems with retry traffic.

Moreover, we can eliminate X-dependence from
the second (fluctuation) term on the right side of
Eq. (4) by transforming the random variable using

Figure 3: An example potential function

Y = 2
√

D(X). In other words, we can treat the mag-
nitude of fluctuations as a constant for any X . The
result of the transformation is as follows:

d
dt

Y (t) = G(Y (t)) + ξ(t),

G(y) =
F (x) − 1/4√
x/T + c(x)

, y = 2
√

x/T + c(x) .

We can investigate the behavior of Y (t) using the po-
tential function given by −

∫
G(y)dy.

The potential function indicates the tendency of
the temporal evolution of Y , but Y fluctuates by the
effect of ξ(t) and often moves against the potential
function. On average, Y moves in the direction that
lowers the potential function. Figure 3 shows an ex-
ample potential function. In that example, Y tends to
be distributed near the local minimum point. If, how-
ever, Y reaches the potential wall due to fluctuations
ξ(t), Y diverges (namely, the arrival rate diverges and
the system suffers overloading).

It is well known that the Langevin equation
Eq. (4) is equivalent to the Fokker-Planck equa-
tion [12] as shown by

∂

∂t
p(y, t) = − ∂

∂y
G(y)p(y, t) +

1
2

∂2

∂y2
p(y, t) , (7)

where p(y, t) denotes the probability density function
(PDF) of Y (t). Using Eq. (7), we can simulate the
transition of the PDF of the volume of traffic, and can
assess the probability of its divergence and so forth.
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3 Comparing the Quasi-static Ap-
proach with the Conventional Ap-
proach

3.1 Verification in a Simple M/M/1 Model
We verify that the quasi-static approach, which adds
random fluctuations to the behavior of infinitely high-
speed systems, can appropriately describe the behav-
ior of finite-speed systems. We start our verification
using one of the simplest models: an M/M/1 system
without retry traffic. The quasi-static approach can de-
scribe a system that contains no retry traffic, though it
was proposed to analyze the behavior of retry traffic.
The arrival rate of a simple M/M/1 system is constant,
and it is well known that the volume of traffic follows
a Poisson distribution.

First, we consider the Langevin equation corre-
sponding to the M/M/1 system. Since the second and
third terms on the right side of Eq. (5) correspond to
retry traffic from the data and control plane, respec-
tively, we find that

F (X) = λ0 −
X

T
. (8)

Similarly, since the second term on the right side of
Eq. (6) represents the fluctuation magnitude of retry
traffic from the data plane, we obtain

D(X) =
X

T
. (9)

We therefore get the Langevin equation corresponding
to a simple M/M/1 system by substituting Eqs. (8) and
(9) for Eq. (4).

Moreover, the Fokker-Planck equation equivalent
to this Langevin equation is derived as follows:

∂

∂t
p(x, t) = − ∂

∂x
F (x)p(x, t) +

1
2

∂2

∂x2
D(x)p(x, t) .

(10)

Note that we do not transform the random variable,
because our aim is not to consider system stability
with respect to the potential function, but rather to
compare the distribution of X against a Poisson dis-
tribution.

Using Eq. (10), we compute the input traffic of
the simple M/M/1 system, and in Fig. 4 the result of
the stationary state is compared with the Poisson dis-
tribution that is the theoretical result. The parameters
of the M/M/1 system are the arrival rate λ0 = 35, the
service rate η = 50, and the timescale T = 1 s. The
horizontal axis represents the volume of traffic X(t)
that is the number of arrivals in the interval (t − T, t].
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0.6!
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0.8!
0.9!
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0! 10! 20! 30! 40! 50! 60! 70!

C
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F 

Volume of traffic X(t) 

Fokker-Planck equation!
Poisson distribution!

Figure 4: Poisson distribution and the distribution of
X(t) as computed by the Fokker-Planck equation with
Eqs. (8) and (9)

Note that the figure displays the distributions as cumu-
lative density functions (CDFs), not PDFs. According
to the figure, the distribution does not correspond to a
Poisson distribution, despite having already reached a
stationary state. We must therefore reconsider Eqs. (8)
and (9).

To solve this problem, we should exactly model
the system as the Langevin equation. It is intuitive
that X(t) is defined as the actual number of arrivals in
time interval (t − T, t], since λk is the arrival rate in
the time interval ((k − 1)T, kT ]. If we define dX(t)
as the change of X(t) in a minute distance dt, we find
that

dX(t) = X(t + dt) − X(t)

= U(t,dt) − U(t − T, dt) ,

where U(t,dt) is the actual number of arrivals in the
time interval (t, t + dt] (Fig. 5). The expectation and
variance of random variable U(t,dt) are both λ0dt
because the future arrivals follow a Poisson arrival.
Moreover, the conditional distribution of U(t−T, dt),
given that U(t−T, T ) = X(t), obeys a binomial dis-
tribution B(X(t),dt/T ) [13]. Therefore, the condi-
tional expectation and variance of U(t − T, dt) is as
follows:

E[U(t − T, dt) |U(t − T, T ) = X(t)] = (X(t)/T )dt,

Var[U(t − T, dt) |U(t − T, T ) = X(t)]

= (X(t)/T )dt − (X(t)/T 2)(dt)2

≅ (X(t)/T )dt.
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Figure 5: Transition of X(t) that expresses actual in-
put traffic in the past period T [s]

As a result, we can write dX(t) as

dX(t) ≅ λ0dt − X(t)
T

dt +

√
λ0 +

X(t)
T

N(t)
√

dt ,

where N(t) is a random variable that obeys a stan-
dard normal distribution and time series N(t) are in-
dependent for different t. Now, we define W (t) as a
Wiener process. Since N(t)

√
dt is dW (t), we get the

Langevin equation as

d
dt

X(t) = λ0 −
X(t)
T

+

√
λ0 +

X(t)
T

dW (t)
dt

= λ0 −
X(t)
T

+

√
λ0 +

X(t)
T

ξ(t) ,

and the appropriate fluctuation magnitude D(X) is
given by

D(X) = λ0 +
X(t)
T

. (11)

This is a necessary revision, because X(t) is given as
a function of time t, not as an amount that is defined
in a time interval.

We recomputed the distribution of X(t) using the
above Fokker-Planck equation with exactly modeled
fluctuation magnitude D(X). Figure 6 shows the re-
sults; we can confirm that the behavior of input traffic
for simple M/M/1 is described appropriately by the
quasi-static approach. Figure 7 presents the poten-
tial function corresponding to the above experiment.
Note that this potential function considers X(t) (not
Y (t)), and the fluctuations on each X are not con-
stant. We can find the local minimum (stability point)
at X = 35.0, and the volume of traffic X tends to be
distributed around the stability point.

3.2 Verification in an M/M/1-based System
with Retry Traffic

This subsection verifies the validity of the quasi-static
approach for an M/M/1-based system with retry traf-
fic. This model is significant because a control plane
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0.3!
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1!

0! 10! 20! 30! 40! 50! 60! 70!
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F 

Volume of traffic X(t) 

Fokker-Planck equation!
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Figure 6: Poisson distribution and the distribution of
X(t), as computed by the Fokker-Planck equation
with Eqs. (8) and (11)
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Figure 7: Potential function of the simple M/M/1

that generates retry traffic characterizes the model of
an IP telephony system. In this subsection we treat
M/M/1-FIFO-based systems, but the results can also
apply to M/M/1-PS systems since a process of the
number in the M/M/1-PS system is the same birth-
death process as that of an M/M/1-FIFO system [14].

In the system of this section, the retry traffic rate
at time t is proportional to the event-average of the
number in the system at the time of request arrival in
the time interval (t − T, t], and it is added to the ar-
rival rate at time t. Note that the traffic rate is changed
not at discrete times as in the quasi-static retry traf-
fic model, but rather using continuous time. Unfortu-
nately, there is no analytical method to obtain the dis-
tribution of system traffic volume, unlike the case of
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the simple M/M/1 system. We therefore compute the
distribution of traffic volume (the number of arrivals
including the retry traffic in an interval (t − T, t] ) by
Monte Carlo simulation, and compare with the results
of the quasi-static approach.

As in the simple M/M/1 case, we investigate the
Langevin equation corresponding to the M/M/1-based
system with retry traffic. If we assume that the system
works at infinitely high speed, the transition of the ar-
rival rate in the quasi-static retry traffic model is given
by

λk+1 = λ0 + ε
λk/η

1 − λk/η
.

We rewrite this equation as difference ∆λk,

∆λk = λk+1 − λk

= λ0 − λk + ε
λk/η

1 − λk/η
.

By a natural continuation to yield the Langevin equa-
tion, we have

dλ(t) =
1
T

(
λ0 − λ(t) + ε

λ(t)/η

1 − λ(t)/η

)
dt ,

where λ(t) denotes the arrival rate at time t. We sub-
stitute X(t)/T (the actual number of arrivals per sec-
ond) for λ(t) to consider a finite speed system. As
in the simple M/M/1 case, the change of X(t), which
is the number of arrivals in the past period T [s], is
composed of the increment U(t,dt) and the decre-
ment −U(t − T, dt). Their conditional expectation
and variance are given by

E[U(t,dt) |U(t − T, T ) = X(t)]

= λ0 + ε
X(t)/(ηT )

1 − X(t)/(ηT )
dt ,

Var[U(t,dt) |U(t − T, T ) = X(t)]

= λ0 + ε
X(t)/(ηT )

1 − X(t)/(ηT )
dt ,

E[−U(t − T, dt)] = −X(t)
T

dt ,

Var[−U(t − T, dt)] =
X(t)
T

dt .

As a result, F (X) and D(X) of the Langevin equa-
tion that describes the temporal evolution of X(t) are

given by

F (X) = λ0 −
X(t)
T

+ ε
X(t)/(ηT )

1 − X(t)/(ηT )
, (12)

D(X) = λ0 +
X(t)
T

+ ε
X(t)/(ηT )

1 − X(t)/(ηT )
. (13)

The third term on the right side of Eq. (13) corre-
sponds to the fluctuations of retry traffic. However,
Eq. (6) does not contain this term since it can be ne-
glected under the conditions assumed in [7]. By sub-
stituting Eqs. (12) and (13) for Eq. (10), we find the
Fokker-Planck equation that can compute the behav-
ior of the M/M/1-based system with retry traffic.

We used two methods to compute the CDF of in-
put traffic including retry traffic when t = 1, 10, 20,
and 30 s: Monte Carlo simulation and the Fokker-
Planck equation for the quasi-static approach. Fig-
ure 8 shows the results. The parameters used are as
follows: The original arrival rate λ0 excluding retry
traffic is 35, the service rate η is 50, the intensity of
retry traffic ε is 0.1, and user timescale T is 1 s. We
set the initial distribution p(x, 0) of the volume of traf-
fic as a Poisson distribution with parameter λ0T . The
figure confirms that the quasi-static approach yields
results similar to those of the Monte Carlo simula-
tion, though the model contains retry traffic. Figure 9
presents the potential function corresponding to the
above experiment. Note that this potential function
considers X(t) (not Y (t)), and the fluctuations on
each X are not constant. We can find the local mini-
mum (stability point) and the wall of the potential at
X = 35.25 and X = 50, respectively. The volume
of traffic X tends to be distributed around the stabil-
ity point, but X diverges once it crosses the wall of
potential because it exceeds the capacity ηT that the
system can process in a period T and the number in
the system diverge. It is of prime interest to evaluate
traffic divergence, which corresponds to system over-
load. In Fig. 8, the value of CDF at X = 50 falls with
time, meaning that the diverge probability of traffic
increases gradually. Note that we consider traffic to
have diverged if X(t) exceeds ηT once in the Monte
Carlo simulation.

To verify the validity of the quasi-static approach,
we check that its results correspond to those of Monte
Carlo simulation with various parameters. First, we
vary the original input traffic rate λ0 as 30, 35, and
40. The parameters of the experiment are the same
as in the above experiment, except for λ0. Figure 10
shows the results of the probability of traffic diver-
gence. The horizontal and vertical axes represent time
and the probability of traffic divergence, respectively.
The figure therefore indicates the CDF of the time that
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Figure 8: Distribution of input traffic at time t on the M/M/1-based system with retry traffic
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Figure 9: Potential function of the M/M/1-based sys-
tem with retry traffic

the system will spend until the volume of traffic X(t)
in the interval (t − T, t] first exceeds the capacity ηT
that the system can process in a period T . The figure
confirms that the divergence processes of the traffic
calculated by the Fokker-Planck equation correspond
to the results of Monte Carlo simulation for any λ0.
Similarly, we individually vary the user timescale T
as 0.5, 1.0, and 1.5, and the intensity of retry traffic
ε as 0.1 and 0.5. The other parameters of the exper-
iment are the same as in the first experiment in this
subsection. Figures 11 and 12 display the respective
results and similar results are gained.

The above experiments confirm that the quasi-
static approach can describe the behavior of retry traf-
fic in an M/M/1-based system, like the conventional
Monte Carlo simulation. We confirm that the prob-
ability of traffic divergence calculated by the quasi-
static approach corresponds to the results of Monte
Carlo simulation of the queuing system under slow
system conditions. The target system that we want
to evaluate using the quasi-static approach is a high-
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Figure 10: Probability of traffic divergence in an
M/M/1-based system with retry traffic for various λ0
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Figure 11: Probability of traffic divergence in an
M/M/1-based system with retry traffic for various
timescales T

speed system that is difficult to evaluate using con-

0!
0.1!
0.2!
0.3!
0.4!
0.5!
0.6!
0.7!
0.8!
0.9!

1!

0! 10! 20! 30! 40! 50!

Pr
ob

ab
ilit

y 
of

 tr
af

fic
 d

iv
er

ge
nc

e!
Time [s] 

Fokker-Planck equation (epsilon = 0.1)!
Monte Carlo simulation (epsilon = 0.1)!
Fokker-Planck equation (epsilon = 0.5)!
Monte Carlo simulation (epsilon = 0.5)!

Figure 12: Probability of traffic divergence in an
M/M/1-based system with retry traffic for various
retry traffic intensities ε

ventional Monte Carlo simulation. We expect that the
quasi-static approach can appropriately evaluate the
behavior of retry traffic for a high-speed system, since
the quasi-static approach can evaluate a low-speed
system despite the difficulty of evaluating a large mag-
nitude of fluctuations.

3.3 Verification in an M/M/s-based System
with Retry Traffic

Finally, we apply the quasi-static approach to an
M/M/s-based system with retry traffic, and verify the
validity of the quasi-static approach. We assume that
retry traffic is generated at a rate proportional to the
number in the system of M/M/s-based system, like
the above-mentioned M/M/1-based system with retry
traffic. The average number in the system of the
M/M/s system q(ρ, c) is given by

q(ρ, c) =
ρ(cρ)c

c!(1 − ρ)2
P0 + cρ,

P0 =
1 − ρ

(1 − ρ)
∑c

i=0
(cρ)i

i! + (cρ)c

c! ρ
,

where λ, η, ρ, and c denote arrival rate, service rate,
utilization factor λ/η, and the number of servers, re-
spectively [15]. By replacing the third terms, which
describe the behavior of retry traffic, we can easily
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Figure 13: Probability of traffic divergence in an
M/M/s-based system with retry traffic for various
number of servers c

extend Eqs. (12) and (13) of the M/M/1 model to the
M/M/s model as follows:

F (X) = λ0 −
X(t)
T

+ εq

(
X(t)
ηT

, c

)
, (14)

D(X) = λ0 +
X(t)
T

+ εq

(
X(t)
ηT

, c

)
. (15)

We calculate the probability of traffic divergence in
an M/M/s-based system with retry traffic using the
Fokker-Planck equation with Eqs. (14) and (15). Fig-
ure 13 compares of the results of the Fokker-Planck
equation and the Monte Carlo simulation for the num-
ber of servers c = 1, 25, and 50. The figure confirms
that the results of the Fokker-Planck equation corre-
spond to those of Monte Carlo simulation.

The quasi-static approach evaluates the behavior
of retry traffic due to user impatience in various queu-
ing systems, though this paper focused on M/M/1-
(or M/M/1-PS-) and M/M/s-based systems with retry
traffic. We can obtain F (X) and D(X) of another
system version by replacing the function q in Eqs. (14)
and (15) as the average number in the system if we
assume that the request arrival process is a Poisson
process.

4 Conclusion
This paper modeled the fluctuation for exactly repli-
cating the behavior of retry traffic due to user impa-
tience using the quasi-static approach, and showed the
validity of an evaluation of the quasi-static approach.
We compared the distribution of the volume of traf-
fic and the probability of traffic divergence calculated
by the quasi-static approach and conventional Monte
Carlo simulation, in M/M/1- and M/M/s-based sys-
tems with retry traffic under the condition of a slow
system. We confirmed that the evaluation results of
the quasi-static approach and Monte Carlo simula-
tion correspond, and so expect that the quasi-static
approach can appropriately evaluate the behavior of
retry traffic in a high-speed system, because the quasi-
static approach can evaluate a low-speed system de-
spite the large magnitude of its fluctuations that make
evaluation more difficult.
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